LEARNING ANALYTICS

“Learning analytics refers to the interpretation of a wide range of data produced by and gathered on behalf of students in order to assess academic progress, predict future performance, and spot potential issues.”

- DOE 2012

How is Big Data Different?

<table>
<thead>
<tr>
<th></th>
<th>Traditional</th>
<th>Big Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Collection</td>
<td>Purposeful</td>
<td>Incidental / Opportunistic</td>
</tr>
<tr>
<td>Intrusiveness</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Data Acquisition Cost</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Frequency</td>
<td>e.g. Quarterly</td>
<td>Continuously</td>
</tr>
<tr>
<td>Temporality</td>
<td>Static Reports</td>
<td>Dynamic Dashboards</td>
</tr>
<tr>
<td>Hypotheses</td>
<td>Causal</td>
<td>Associations</td>
</tr>
<tr>
<td>Sample Size</td>
<td>Small biopsies</td>
<td>Large swaths</td>
</tr>
</tbody>
</table>
Outline
NYU Approach to Learning Analytics:

“The Football Field” – Listeners everywhere
“The Blade of Grass”
 – Insights at a Fine Level
“The New CME” – Action Oriented

NYU Education Data Warehouse

NYU Practice Network
NYU Education Data Warehouse
Clinical Data Warehouse
Epic EMR
Epic EMR

Activity Logging

iOS 7
iBeacons
New “Listeners”

- iPads
- Point-of-care digital forms
- Immediate Lecture evaluations
- Learning interactions with EHR
- Anything a Smartphone can do

LEARNING ANALYTICS

- **Descriptive Analytics:** $Y = \text{Counts, averages, } \%, \text{ min/max}$

 Understand what happened in past

- **Diagnostic Analytics:** $y = mx + b$

 Understand what influences what
 Why did this happen?
 Focus is on group level coefficients

- **Predictive Analytics:** $y = mx + b$

 Knowing something sooner
 Early warning system
 Focus is on individual level prediction

- **Prescriptive Analytics:** IF Y THEN WHAT?

 Adjustment on the fly (uses the prediction)
 Supports Individualization
LEARNING ANALYTICS

Descriptive Analytics: Y: Counts, averages, %, min/max
Understand what happened in the past

Diagnostic Analytics: \(Y = f(X) \)
Understand what influences what
Why did this happen?
Focus is on group level coefficients

Predictive Analytics: \(Y = \beta_0 + \beta_1 X \)
Knowing something sooner
Early warning system
Focus is on individual level prediction

Prescriptive Analytics: IF-THEN-WHAT?
Adjustment on the fly (uses the prediction)
Supports individualization

NYU Medical Knowledge Report

Path Diagram for the Class of 2014
LEARNING ANALYTICS

Descriptive Analytics: Y: Counts, averages, %, min/max
Understand what happened in past

Diagnostic Analytics: y = mx + b
Understand what influences what
Why did this happen?
Focus is on group level coefficients

Predictive Analytics: Knowing something sooner
Early warning system
Focus is on individual level prediction

Prescriptive Analytics: IF-THEN-BEAUSE?
Adjustment on the fly (uses the prediction)
Supports Individualization

Gartner Model

NEW TARGETS for the PREDICTIONS

Created a data mart with several combined sources, all linked via the NPI
- AMA Masterfile data for NYU UME/GME graduates
- CMS Physician Compare: Directory and Quality
- Medicare Part D Prescribing Data
- CMS Utilization and Payment Data
- NPI Database
- New York State SPARCS
Create a database of your graduates with their NPI numbers

Our Approach at NYU Langone

Physician Quality Reporting System (PQRS) Qualified Clinical Data Registry (QCDR) measure performance rates

<table>
<thead>
<tr>
<th>Measure</th>
<th>NYU GME Graduates</th>
<th>NYU Med School</th>
<th>Non-NYU Med School</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast Cancer Screening</td>
<td>89.7%</td>
<td>76.2%</td>
<td>66.7%</td>
</tr>
<tr>
<td>Case Plans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemoglobin Cytometry Screening</td>
<td>93.1%</td>
<td>84.5%</td>
<td>87.5%</td>
</tr>
<tr>
<td>Determination of Current Medications in the Medical Record</td>
<td>93.4%</td>
<td>87.3%</td>
<td>86.8%</td>
</tr>
<tr>
<td>Hemoglobin Variations for Older Adults</td>
<td>93.4%</td>
<td>90.1%</td>
<td>93.6%</td>
</tr>
<tr>
<td>Body Mass Index (BMI) Screening and Follow-up Plan</td>
<td>78.5%</td>
<td>87.8%</td>
<td>71.7%</td>
</tr>
<tr>
<td>Screening for High Blood Pressure and Follow-up Documented</td>
<td>74.8%</td>
<td>74.0%</td>
<td>69.0%</td>
</tr>
<tr>
<td>Use of High Risk Medications in 48 Hours*</td>
<td>11.4%</td>
<td>3.5%</td>
<td>4.8%</td>
</tr>
</tbody>
</table>

2015 Physician Quality Reporting System and non-PQRS Qualified Clinical Data Registry measures

Dreyfus Model of Expertise Development

Compound Interest Model of Expertise Development

Master Adaptive Learning compared with Linear Learning
LEARNING ANALYTICS

Descriptive Analytics:
Counts, averages, %, min/max
Understand what happened in past

Diagnostic Analytics:
y = mx + b
Understand what influences what
Why did this happen?
Focus is on group level coefficients

Predictive Analytics:
y = bx + t
Knowing something sooner
Early warning system
Focus is on individual level prediction

Prescriptive Analytics:
IF THEN WHAT?
Adjustment on the fly (uses the prediction)
Supports Individualization

Individualized Report

Example	Text	Color
<25th percentile | "A predictive model based on your quantitative data available to the 18th month point of medical school suggests you are on track to pass the USMLE" | Green
25-50th percentile | "A predictive model based on your quantitative data available to the 18th month point of medical school suggests you will pass the USMLE in 90% of cases." | Yellow
>50th percentile | "Students with your profile of quantitative data up to the 18th month point of medical school have gone on to score between xx and yy on the USMLE Step 1 in 90% of cases." | Red

A 10% improvement in your score on each of these 3 medical knowledge report categories would have resulted in the maximum USMLE Step 1 Score improvement, based on our statistical models. Your mileage may vary.

- Neuroanatomy
- Physiology
- Histology

Gartner Model

Example	Text	Color
<25th percentile | "Students with your profile of quantitative data up to the 18th month point of medical school have gone on to score between xx and yy on the USMLE Step 1 in 90% of cases." | Green
25-50th percentile | "Students with your profile of quantitative data up to the 18th month point of medical school have gone on to score between xx and yy on the USMLE Step 1 in 90% of cases." | Yellow
>50th percentile | "Students with your profile of quantitative data up to the 18th month point of medical school have gone on to score between xx and yy on the USMLE Step 1 in 90% of cases." | Red

A 10% improvement in your score on each of these 3 medical knowledge report categories would have resulted in the maximum USMLE Step 1 Score improvement, based on our statistical models. Your mileage may vary.

- Neuroanatomy
- Physiology
- Histology
“The Blade of Grass”

The Atomic Unit of Emergency Medicine

DECISION

Item Bank

Case 1

Item Bank

Case 1 Case 2
Item Bank

Case 1 Case 2 Case 3 Case 4 Case 5 Case xx

Sensitivity

Cumulative Accuracy

Number of Cases Completed

Cumulative Averaged Sensitivity for 12 Fellows

Number of Cases Completed

Sensitivity

Number of Cases Completed

Time Based
LEARNING ANALYTICS

“Learning analytics refers to the interpretation of a wide range of data produced by and gathered on behalf of students in order to assess academic progress, predict future performance, and spot potential issues.”

- DOE 2012
Door to Needle Time

Radiology Pilot Project

UK National Audit: Satisfaction with Surgeon

Adjusted mean scores for “Satisfaction with Surgeon” for hospital organisations based on women's responses on the 3 month post surgery questionnaire

The New CME “Listeners”

- Un-Announced Standardized Patients
- In-Situ Simulations
- Patient Reported Outcome Measures
- Process Metrics
 - E.g. Door to Needle Time in Stroke Activations
 - E.g. Surgical Video

LEARNING ANALYTICS

“Learning analytics refers to the interpretation of a wide range of data produced by and gathered on behalf of students in order to assess academic progress, predict future performance, and spot potential issues”

- DOE 2012
Quality Improvement

“Quality improvement refers to the interpretation of a wide range of data produced by and gathered on behalf of clinicians in order to assess progress, predict future performance, and spot potential issues.”

- DOE 2012

<table>
<thead>
<tr>
<th>How is Big Data Different?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Data Collection</td>
</tr>
<tr>
<td>Intrusiveness</td>
</tr>
<tr>
<td>Data Acquisition Cost</td>
</tr>
<tr>
<td>Frequency</td>
</tr>
<tr>
<td>Temporality</td>
</tr>
<tr>
<td>Hypotheses</td>
</tr>
<tr>
<td>Sample Size</td>
</tr>
</tbody>
</table>

Feedback

The New CME

- More, better data about individuals
- Learning data and Quality data will overlap
- Shift from time-based to performance-based metrics
- Shift from outcome to process metrics
- Shift from measures of knowing to measures of doing

Limitations

- Big Brother aspect of this needs to be worked out
- Physician “safety” will be a necessary component of any system
- Implies resource re-alignments
Education Data For Innovations Committee

The Research on Medical Education Outcomes (ROME) Registry: Addressing Ethical and Practical Challenges of Using “Bigger,” Longitudinal Educational Data

Discussion