International Handbook of the Learning Sciences

Edited by Frank Fischer, Cindy E. Hmelo-Silver, Susan R. Goldman, and Peter Reimann
A Short History of the Learning Sciences

Christopher Hoadley

The learning sciences is a field that studies how people learn and how to support learning. It is a relatively young scholarly community whose history reflects the influence of the many other disciplines that are concerned with learning and how to support it (e.g., anthropology, education, psychology, philosophy). Disciplinary communities reflect not just epistemological, intellectual, and methodological commitments in the abstract. Rather, as is well documented in the sociology of science, research fields reflect the people in them and both their interconnections and disconnections from other communities. Understanding these as well as their origins is enlightening with respect to what aspects of a field are core commitments, what aspects are hidden assumptions, and what aspects might merely be accidents of history. For these reasons, this introduction to the history of the learning sciences will be primarily about a community of people who dub themselves “learning scientists.” And, like most historical accounts, this history reflects the perspective of the author. As a U.S.-based academician in the field for approximately 30 years, my familiarity is greatest with the North American parts of this story, and is almost entirely limited to the portions that were accessible through English-language research literature. As such, this chapter is best understood as “a” history, not “the” history.

My perspective is that the learning sciences are empirical, interdisciplinary, contextualized, and action-oriented. Throughout this narrative, I hope to illustrate the forms and functions through which the field of learning sciences manifests these four characteristics. Like most historical unfoldings, the path is twisted not straight. I will try to highlight how and when elements of these four characteristics start to emerge.

Seeds of Learning Sciences

Explorations of how best to teach are centuries old, but the scientific study of the nature of the mind and how it learns has its origins in philosophy and medicine. Around the beginning of the 20th century, there were several developments that marked what one might call the emergence of modern-day empirical approaches to the study of learning. On one hand, drawing on medical models, psychology began to emerge as independent of philosophy with different motivations and methods. For example, the physician Wilhelm Wundt used the methods of experimental natural science to understand phenomena such as human perception of color and sound. Sigmund Freud began to address so-called “nervous disorders” by trying to understand the nature of the mind—his empirical investigations involved introspection, leading to the invention of Freudian psychoanalysis.
Ivan Pavlov, the Russian physiologist, investigated the nature of conditioning in shaping learning after discovering physiological responses that preceded physical stimuli (such as dogs salivating before food was actually present in anticipation of a meal). In the early 20th century the biologist Jean Piaget studied learning as a manifestation of development, likening the maturing of children to the ways a flower might bloom, with biologically constrained possibilities emerging from the intersection of nature and nurture. Maria Montessori, trained as a physician, investigated children with disabilities near the turn of the 20th century and children’s responses to various stimuli led her to begin creating the techniques used to the present day in Montessori schools. On the other hand, one countervailing force to these physiologically based approaches was a more contextualized way of conducting empirical research that emerged from philosophy, exemplified by the philosopher John Dewey. Dewey founded a laboratory school at the University of Chicago to study education within an authentic social context, one in which teachers and researchers were the same people. It is important to note that this was a time when many disciplines were working in parallel to formulate their core epistemologies and methods of approaching learning and education, including problems of explanation, prediction, and application to practical problems. The early to mid-20th century saw the empirical disciplines become more solidified and differentiated in academic institutions. For instance, not only did psychology become its own discipline, distinct from medicine, but psychology began to distinguish between experimental and clinical psychology. This posed an interesting question for how education would be institutionalized.

Generally, the shift from education as an applied profession to a legitimate area for empirical research was a contested one. In the United States, education in the form of teacher preparation was taught in ‘normal schools’ through the end of the 19th century, but this gradually was displaced by the notion of a school of education as a center for, not only practical training of teachers, but academic research relevant to the problems of education. By the mid- to late 20th century, most universities in the US had a school or college of education with a dual mission of preparing teachers and conducting educational research. However, Lagemann (2000) chronicles the history of educational research as contested terrain—at every level, especially methodology and epistemology. These tensions linked strongly to the characteristics of discipline, empiricism, contextualization, and action-orientation. From a disciplinary perspective, disputes focused on whether education was an intellectual (scientific) discipline unto itself, an application area to be colonized by ‘real’ disciplines, or a crossroads in which interdisciplinary inquiry could flourish. From an epistemological perspective, Dewey saw “an intimate and necessary relation between the processes of actual experience and education” (Dewey, 1938/1997, p. 20), and advocated for a holistic, pragmatic approach to the science of learning, while behaviorists like Tolman and Skinner saw human experiences as epiphenomenal and an invitation to pseudo-science. Skinner argued for the importance of the human environment as a source of conditioning for the individual, but saw the processes underlying learning as entirely universal, while Dewey saw learning as an inherently social, cultural, and societally embedded phenomenon. Methodological rifts were consistent with the epistemological: In the name of objectivity, the behaviorists advocated an arms-length, objective science of learning while the pragmatists and progressive education researchers took the positions of participant-observers in research. According to Lagemann (2000), behaviorism claimed the highest status among these epistemologies, but behaviorist theories increasingly ran up against phenomena that required hypothesizing hidden internal stimuli and other workarounds to keep the mind’s “black box” closed while explaining human behavior. Openings to cognitivism also came from developmental psychologists’ (most notably Piaget [1970] and Bruner [1966]), proposals that thoughts in the head mattered and that the stages of human development were less fixed than previously thought (see Olson, 2007).

By the 1970s and 1980s, and relevant to the challenge of “opening the black box” of the mind, two trends dramatically changed the landscape for people studying thinking (and by extension, learning): the advent of computing and the emergence of cognitive science. Beginning in the 1930s and 1940s, technology advances had led to both the field of cybernetics (studying the nature of dynamic
systems that had self-regulating properties) and the use of metaphors like the telephone switchboard for thought and thinking. The emergence of digital computing birthed computer science, a field concerned with not only calculation of numbers but symbol manipulation more generally. Early on, the subfield of artificial intelligence emerged to design and study ways in which artificial symbol manipulation systems (electronics, digital computers, and software) could mimic intelligent behaviors exhibited by natural organisms like people. This approach included not only emulation of intelligent behavior, but using the computer as a model of the mind (Block, 1990).

In parallel, by the 1950s, debates about whether mental events and representations were empirically measurable had begun to chip away at Skinner’s conception of thoughts as epiphenomenal, most notably by linguists like Noam Chomsky, who argued that language development was demonstrably not explainable with behaviorist theories (Gardner, 1985). Chomsky argued that mental machinery innately constrained language development beyond mere conditioning. Between the 1950s and 1970s, interdisciplinary examinations of thought started to reveal that not only the contents, but the mechanisms or machinery of thinking could be studied. Researchers began to overcome the limitations of introspection as the sole method of studying internal mental processes by drawing on techniques from a range of fields. For instance, Chomsky’s argument was bolstered by much earlier medical research showing that damage to specific areas of the brain yielded very particular disabilities in producing or comprehending language. Reaction time studies and the methods of experimental psychology were used to attempt to infer the internal processes of thinking, from perception to attention to memory. The combination of computational perspectives focused on how to simulate or model thinking with artificial computational systems, and cognitive perspectives that viewed the contents and processes of thought as inspectable (breaking open the ‘black box’ with which behaviorists viewed thinking) created the conditions under which an interdisciplinary and empirical field calling itself cognitive science emerged (Gardner, 1985).

The degree to which cognitive science viewed thought as linked to the context “outside the head” increased over time; a special issue published in the journal Cognitive Science (Cognitive Science Society, 1993) posed a debate on how (much) cognition was “situated,” i.e., inextricable from both physical and sociocultural context. On the one hand, you had the information processing psychology view which opened up cognition to inspection compared to behaviorism, but still treated the outside world as ‘inputs.’ On the other hand, you had the situated view, which helped establish a contextualized science for learning, in which learning at the minimum required investigating the social and cultural contexts of learning, and at the maximum treated learning as inherently a phenomenon not in the head but in the relationships between person and their context. Thus, prior to the beginning of the learning sciences, the cognitive science revolution helped establish more interdisciplinary approaches to thinking (and learning), with two effects: It laid the groundwork for empirical studies of learning to grow beyond black-box models, and it paved the way for examining learning as a product of context.

**Early Learning Sciences (1980s–1990s)**

The dilemma of how to leverage the interdisciplinary, empirical methods of the cognitive sciences for designing learning environments (action-orientation) while dealing with the messiness of learning-in-context, arguably led to the birth of what we now call learning sciences. The early history of the learning sciences was a time when the action-orientation and contextualization characteristics of educational research in cognitive science were being worked out. In 1989, I was at MIT pursuing what now might be called a learning sciences agenda while obtaining a cognitive science degree. I was working for Seymour Papert’s Learning and Epistemology group at the MIT Media Lab, and simultaneously with developmental psychologist Susan Carey’s research group studying conceptual change and scientific reasoning. I vividly recall a week in which colleagues in both quarters questioned why I was bothering with the other. The mantra at the Media Lab, “demo or die,” contrasted
with the traditional “publish or perish” in the psychology program. This question of which was more important—innovation and creative design versus scientific explanation and prediction—paralleled the difference between engineering and science. The tension I felt was more about how separating these two endeavors impoverished each.

Near the time of the arrival of more situated theories of thinking and learning, education researchers working in cognitive science grew somewhat frustrated with the degree to which cognitive science was distancing itself from cognition ‘in the wild’ (to borrow a term from Hutchins, 1995). The late 1980s and early 1990s can be marked as the birth of the term ‘learning sciences,’ and the field as such. Janet Kolodner, the computer scientist who founded the Journal of the Learning Sciences in 1991 clearly displayed an action-oriented stand in describing some of the motivations for the journal and the field. These included “need[ing] concrete guidelines about what kinds of educational environments are effective in what kinds of situations” and the need to make use of such guidelines “to develop more innovative ways to use computers” (Kolodner, 1991). In a retrospective history, she described how the cognitive scientists working at the Institute for the Learning Sciences founded in 1990 at Northwestern University were fundamentally as interdisciplinary as the cognitive sciences, but with additional linkages to educational psychology and curriculum and instruction (Kolodner, 2004). She also noted a frustration in the community with the lack of connection between what theories of cognition could predict (for example, with AI production systems) and what might be educationally relevant in real contexts. Kolodner highlighted that the action-oriented design mandate of learning sciences might contrast it with much of the cognitive science community in the 1990s for whom the design of artificial intelligence systems was primarily in service of generating theories and models of thinking. In that same issue of Educational Technology in which the Kolodner piece appeared, Smith (2004), a graduate of the first cohort of the Northwestern Learning Sciences Ph.D. program, drew a distinction between ‘neat’ as in lab-based and ‘scruffy’ as in field-based studies of learning. His characterization of learning sciences as ‘scruffy’ highlights the contextualized nature of the learning sciences’ action orientation, and distinguishes the design research conducted by learning scientists from that done in the instructional systems design field. As well, each article described some of the milestones of the era leading to the creation of a community.

It was in 1991 as well that the first International Conference of the Learning Sciences was spearheaded by Northwestern’s Director of the Institute for Learning Sciences, Roger Schank. Essentially, Schank renamed and refocused what was supposed to have been an Artificial Intelligence in Education conference. This renaming sparked interest in learning sciences particularly in the US, but had long-term consequences that made it more difficult to establish an international society of the learning sciences. During this same period of time, a community was coalescing around interests in computer support for collaborative learning (CSCL) with commitments to interdisciplinarity, and an action-oriented, empirical, and contextualized view of learning (Stahl, Koschmann, & Suthers, 2014). Following a workshop in 1989 in Maratea, Italy, in 1991, a workshop on CSCL was held in Carbondale, Illinois, hosted by Tim Koschmann, underwritten by John Seely Brown and sponsored by Xerox Parc. The workshop yielded a 1992 special issue of the newsletter of the Association for Computing Machinery (ACM) Special Interest Group on Computer Uses in Education. In 1995, the first biennial conference on Computer-Supported Collaborative Learning was held in Bloomington, Indiana, under the auspices of the ACM and the AACE (Association for the Advancement of Computers in Education) with an explicit attempt to alternate years with the ACM Computer-Supported Cooperative Work (CSCW) conference. Victor Kaptelinin from Umeå in Sweden gave a keynote on cultural-historical activity theory, and Marlene Scardamalia discussed knowledge-building communities, cementing the connection between the CSCL conference and sociocultural theories of learning and technology use.

Coincident with this five-year period of emerging conferences in CSCL and ICLS, there was an explosion of technologies that invited not only interdisciplinarity between technologists and educators, but also an action-orientation towards creating technology-mediated learning environments.
In the early 1990s, the Web emerged (with the popularity of the Mosaic browser), as did the capacity to include video in consumer-grade computers (with the creation of Apple’s QuickTime). Teleconferencing technologies were just barely getting out of the lab (for example, the CU-SeeMe software from Cornell). The emergence of commercial internet service providers at this time ensured that networked technologies, critical to collaboration, were widespread, and interest in educational applications grew beyond high-end training, government, and higher education settings to include learners at home, in grade school, and the general citizenry. Many members of the ICLS and CSCL program committees had appointments in computer science or informatics departments, a sharp distinction between these two conferences and most education conferences (even those with a focus on educational technology).

Several institutions played a role in bringing technology, design, and a contextualized view of learning together. The Institute for Research on Learning (IRL), began with initial funding from the Xerox Palo Alto Research Center (PARC). The IRL, directed by Jim Greeno, took culture and anthropology as seriously as technology and design. Similarly, the Lab for Comparative Human Cognition led by Michael Cole advocated a socially construed perspective on both learning research and learning design, and was an early adopter of technologies as a means to bring an action-orientation to social context (Cole, 1999). Many of the institutions which became known for learning sciences in the 1990s were places where interdisciplinary groups of faculty examined new methods for studying and designing learning settings, including notably Stanford and Berkeley on the West Coast, the Cognition and Technology Group at Vanderbilt, and so on. Each, of course, was different but in many cases these groups were supported by funding from the U.S. National Science Foundation or the McDonnell Foundation in projects that shared the four characteristics I’ve described of an interdisciplinary, empirical, contextualized, and action-oriented approach to understanding learning. The McDonnell Foundation alone, through its Cognitive Studies in Education Program (CSEP) funded approximately 50 such projects located in the US, Canada, or Europe over a 10-year period (1987–1997). CSEP was also foundational in building a learning sciences community through its annual meetings of grantees. In those early days of the learning sciences in the US, most of the theoretical stances were either cognitive or somewhat situative (rather than socio-political, cultural-historical, etc.). But interesting interventions implemented in the field were twinned with interesting learning theories that were design-relevant, including Brown and Campione’s fostering communities of learning, Bransford’s anchored instruction (Cognition and Technology Group at Vanderbilt, 1990), Brown, Collins, and Duguid’s (1989) cognitive apprenticeship, Papert’s constructionist environments for learning (Harel & Papert, 1991), Scardamalia and Bereiter’s (1994) knowledge-building communities, Anderson’s cognitive tutors (e.g., Anderson, Conrad, & Corbett, 1989), and Lave and Wenger’s (1991) communities of practice. In each case, important claims about learning were asserted and tested by creating new genres of (mostly technology-mediated) learning environments. The particular mix of disciplines, theories, and approaches to action and context were different in other regions; for instance, Scandinavian researchers often drew on cultural-historical activity theory and participatory design approaches in this era. But one can argue that, in Europe as well as North America, there was a confluence of researchers representing these four characteristics, and that this challenged to varying degrees the particular entrenchments of “mainstream” educational research (for example, attempts to make education research generally more like the discipline of educational psychology).

**Institutionalization of Learning Sciences (1990s–2000s)**

By the late 1990s, both the ICLS conference and CSCL conference had established themselves. CSCL cemented itself as a field in two volumes edited by Tim Koschmann (Koschmann, 1996; Koschmann, Hall, & Miyake, 2002) and the *Journal of the Learning Sciences* was achieving outsized impact given its youth. Key contributions came in: cognition and learning (including elaboration of
Foundations and Orientations

how conceptual change could be supported with technology scaffolding, both cognitively and interpersonally, the role of self-explanation, mental causal models, convergent conceptual change, and new theories of transfer; new methodologies such as interaction analysis, microgenetic analysis, and design experiments; and new approaches to technology including microworlds, tools for fostering communities of learners, tools for scaffolded inquiry, new models of intelligent tutoring systems and goal-based scenarios. Theories of situated activity, co-construction of knowledge, and distributed intelligence helped connect learning to its contexts. In general, all of this research fit the profile of interdisciplinary, empirical, contextualized, and action-oriented. For example, the LeTUS project at Northwestern and the University of Michigan attempted to scale up ideas about using technology to support inquiry science in the large urban school districts of Detroit and Chicago.

It was around this time that the learning sciences as a moniker for an interdisciplinary field began to take hold, as evidenced by data from the Google Books Ngram viewer shown in Figure 2.1. Figure 2.1 shows the prevalence within the Google Books corpus of the literal capitalized phrase “Learning Sciences” for the period 1980–2008, the last year for which data are available. Within North America, many scholars began to attend ICLS and CSCL in alternating years. At the time, ICLS had been held solely in the US, while CSCL had been held in the US and Canada. Both conferences were to some extent international, with attendees from Europe and, to a lesser extent, Asia and Australia (Hoadley, 2005). Although the conferences were organized informally, with the hosting university taking on financial management, there were real questions about the sustainability of this approach, which led Janet Kolodner (then editor-in-chief of JLS), Tim Koschmann (still considered a founding father of CSCL) and me (a newly minted Ph.D. with the job title ‘research cognitive and computer scientist’) to begin organizing a formal professional society that could house these three activities, support continuity, increase visibility and legitimacy, and provide financial stability. We began discussing the idea at the business meetings of each of the conferences in 1999–2000, and elicited experts from North America, Europe, and Asia who could serve on an interim advisory board to guide the founding of a society in 2000–2001.

Early attempts by the advisory board to define and name the organization revealed important differences in how different groups defined “the field” and felt about the two conferences and the journal. While CSCL had a track record of attracting an international audience, and the first European CSCL conference (dubbed “ESCSCL”) was held in Maastricht in the Netherlands in 2001, the ICLS had had less success at attracting an international audience. Within Europe, strong networks of researchers were institutionalizing through formal networks such as the Intermedia project in Norway, the DFG Priority Program Net-based knowledge communication in groups, and

![Figure 2.1](https://books.google.com/ngrams/interactive_chart?content=learning+sciences&case_insensitive=on&year_start=1980&year_end=2008&corpus=15&smoothing=3)

**Figure 2.1** Prevalence of the Literal Phrases “Learning Sciences” and “learning sciences” in Works Indexed by Google Books, 1980–2008

the EU Kaleidoscope Network of Excellence on technology-mediated learning, which were formed in the early 2000s. In the US, a network called CILT (Center for Innovative Learning Technology) was funded by the U.S. National Science Foundation. These networks capitalized on many disciplinary networks in education research, including educational psychology and instructional design, but also helped incorporate technologists from computer sciences as well as human–computer interaction and informatics/information sciences. At the CSCL 2002 meeting in Boulder, Colorado, the interim board discussed the negative connotation that the name ‘learning sciences’ carried for some, given its connection to Roger Schank’s unilateral renaming and co-opting of what was supposed to have been an AI in Ed conference. These connotations concerned many both in North America and Europe, although perhaps for different reasons. Indeed, many in Europe who were frequent CSCL conference participants had no affinity to either JLS or the ICLS conference. However, the interim board failed to identify a better alternative name for the society and the field it intended to support, and voted not to formally define the field, instead allowing the JLS and conferences to speak for themselves.

We continued our work and incorporated the organization in mid-2002 as the International Society of the Learning Sciences. Nine months later, during the ICLS 2002 meeting in Seattle, many participants were concerned that the Society should hold elections as soon as possible to allow wider participation in governance. We attempted to do so, and this backfired spectacularly. At the CSCL 2003 conference in Bergen, Norway, many Europeans saw the ISLS as an American takeover of a quintessentially European conference and scholarly community, a view exacerbated by the attempt to hold elections quickly. This led to a contentious business meeting and a negotiated agreement that CSCL would have a leadership committee within ISLS that was elected by the CSCL community, with some budget autonomy and a formal role in CSCL conference organization. Part of what had happened was that members of the community had been more insular than they realized. North Americans tended to go to both ICLS and CSCL but Europeans tended not to go to ICLS. They saw much of the work in CSCL emerging from European research, whether the traditions of participatory design in Scandinavia, with its strong tradition of research in cultural historical activity theory informing collaborative technologies, the experimental psychology research on collaborative learning processes in Germany, Belgium and the Netherlands, or some of the groundbreaking technology work coming from Europe in CSCW. Through an empirical analysis of the CSCL organizing committees and presenters, I was able to document that CSCL up to that point was truly an international, interdisciplinary conference, but that international collaboration was less strong than you might expect: the majority of CSCL papers were coauthored, but less than 10% of co-authorships were international collaborations (Hoadley, 2005).

In part to foster further internationalization and to avoid worsening any tensions between U.S. and European scholars, the next CSCL was held in Taipei, an important step towards truly internationalizing the society. Since then, both the ICLS and CSCL conferences have rotated among North America, Europe, and Asia or Australia. This has had a number of important outcomes over the years, including solidifying international exchange of scholarship (Kienle & Wessner, 2006). It appears from my perspective that the interdisciplinary of the field has had a different texture in different parts of the world. For instance, in the United States, instructional design and learning sciences were different, whereas in the Netherlands, educational design and educational sciences were more connected. In the United States, it’s quite common for schools of education to have departments of educational psychology, whereas in other areas of the world the psychology researchers might have less connection to schools of education and more to traditional psychology departments. Although the origins of the terminology ‘learning sciences’ may have been contentious, and there may still be debate about whether the field of CSCL is a subfield or a sibling of the field of learning sciences, the institutionalization of the professional society has been echoed in a shift in terminology in the published literature, in the naming of degree programs and institutes, and became a label for a stable and growing worldwide community of scholars.
Another important institutionalization of the field was reflected in the increase of visibility of
design-based research methods as a core methodology for the learning sciences. Following on initial
description of ‘design experiments’ by Collins (1992) and Brown (1992), in the mid-1990s a Design
Experiment Consortium was founded, with many partners recognizable as members of the nascent
learning sciences community. In the late 1990s, the Spencer Foundation funded the Design-Based
Research Collective (Design-Based Research Collective, 2003) and a variety of other researchers
began elaborating the method with special issues of the journals Educational Researcher (Jan/Feb issue,
2003), Educational Psychologist (2004, issue 4), Educational Technology (Jan/Feb issue, 2005) and the
Journal of the Learning Sciences (2004, issue 1). This blending of design and research, while not universal
in the learning sciences, nonetheless became identified with the community (Hoadley, 2004; Hung,
Looi, & Hin, 2005) and helped entrench both the action-oriented and contextualized ways that
the field conducts empirical research. As the principal investigator for the Design-Based Research
Collective, I experienced firsthand how, while these methods often produced useful findings, they
challenged core beliefs in the education community that followed from the tensions Lagemann had
identified between the Deweyan and Thorndikean approach to studying learning. While now it is
far less controversial to suggest that a designer of curriculum might be able to use their involvement
in the creation and adjustment of interventions as they unfold in context to more effectively guide
research, at that time it was seen as a gross violation of a notion of rigor that depended on a rigid
separation between the ‘objective’ scientist and the educator or designer.

Finally, several books had an important impact on cementing the learning sciences. Initially pub-
lished in 1999, the book How People Learn was written by a committee convened by the U.S. National
Academy of Sciences, including a number of scholars active in the learning sciences community.
This book helped consolidate in an authoritative way both the known findings about education and
learning, and helped legitimize linking scientific research and practice (design) in education, advo-
cating as one of its five core principles that we should "conduct research in teams that combine the
expertise of researchers and the wisdom of practitioners" (National Research Council Committee
on Learning Research and Educational Practice, Bransford, Pellegrino, & Donovan, 1999, p. 3). It
also provided a framework that legitimized the role of context in both fostering and studying learn-
ing. Around the same time, Pierre Dillenbourg founded a CSCL book series at the publisher Kluwer
(later absorbed into Springer). Two of the first volumes in the series were What We Know About
CSCL and Implementing It in Higher Education (Strijbos, Kirschner, & Martens, 2004) and Arguing to
of the Learning Sciences was published (Sawyer, 2006) (although, sadly, this edition contained almost
exclusively U.S.-based authors). Thus, we see in this period a consolidation of the learning sciences
as a field supporting interdisciplinary, empirical research that was both action-oriented and sensitive
to the contextualized nature of learning. Although still in its infancy, methodologies, representative
interventions, and core perspectives were emerging. To a large extent this period can be character-
ized as learning scientists finding each other and the common label for what they do.

Flowering of the Learning Sciences (2000s–present)

By the 2000s, the learning sciences, including CSCL, were flowering globally, with increasing insti-
tutionalization through the ISLS. Key achievements included the launch of the International Journal of
Computer Supported Collaborative Learning at Springer and formal arrangements with the ACM’s digital
library to support archiving and indexing of society conference proceedings. The success of doctoral
consortia associated with ICLS and CSCL conferences spawned the creation of conference-related
workshops for early career faculty. As well, with the support of the ISLS, a Network of Academic
Programs in the Learning Sciences (NAPLeS) was initiated. Both JLS and IJCSCL achieved impact
factors that put them among the top five journals in educational research worldwide. Exchange
programs started to crop up; for example, the US NSF (National Science Foundation) and the
German DFG (Deutsche Forschungsgemeinschaft) created a series of international workshops. The ISLS leadership began outreach efforts to articulate better with related societies such as the AI in Ed, Learning Analytics & Knowledge, and Educational Data Mining. After some drifting apart between learning sciences and computer science, funding agencies in several parts of the world were prioritizing work at the intersection of learning and computer science. These programs helped encourage new partnerships between computer scientists and education researchers at the forefront of both fields; in the US, this intersection was termed ‘cyberlearning.’

Some of the key conceptual achievements of the field during this time included a deepening of the insights linking context and learning and further interdisciplinarity. For example, Gerry Stahl led efforts at Drexel University to examine cognition at the small group level through close study and design of software environments to support mathematics learning, leading to his theory of group cognition (Stahl, 2006). As well, an interdisciplinary, international team of psychologists, designers, and computer scientists released an important book on productive multivocality (Suthers, Lund, Rosé, Teplov, & Law, 2013). Importantly, an edited book on critical and socio-cultural theories of learning brought new disciplinary perspectives on power and privilege to the Learning Sciences community (Esmonde & Booker, 2017).

The commitments in the Learning Sciences to action-orientation in conjunction with empirical research in context led to new developments in methodologies. Design-based research was augmented by design-based implementation research drawing on literature from improvement sciences (Bryk, Gomez, Grunow, & LeMahieu, 2015) and new models of research practice partnerships (Penuel, Allen, Farrell, & Coburn, 2015). The field also began examining new video-based technologies for studying learning (Goldman, Pea, Barron, & Derry, 2007; Derry, Minshew, Barber-Lester, & Duke, this volume), interfaces for detecting emotional states learners (Calvo & D’Mello, 2011), and big data approaches (Larusson & White, 2014; Rosé, this volume). Each of these techniques will undoubtedly be important in learning research generally, but each has come from individuals and groups with ties to the global learning sciences community and helps demonstrate the eclecticism, both in disciplines and in epistemology, that supports an empirical, contextualized, action-oriented interdisciplinary research community in the learning sciences. As I edit this, a new article has come out in *JLS* surveying the breadth of what self-described learning scientists do (Yoon & Hmelo-Silver, 2017). It demonstrates that the field is interdisciplinary with strong ties to both empirical research and design, using a broad variety of methodologies and mixed-method approaches, suggesting a sensitivity to contexts of learning.

**Summing up: What Are the Learning Sciences Today and What Will They Be in the Future?**

In an earlier paper, I described research communities as defined by scope and goals, theoretical commitments, epistemology and methods, and history (Hoadley, 2004). To these four, I would add a fifth today, coming directly from the word ‘community’: communion, i.e., being not only in communication, but also recognition and acceptance of each other’s stances. When I was a junior scholar, *JLS* was one of the only places where eclectic methodologies were welcomed. At present, the Learning Sciences remain a community or field but not a discipline: People in the community retain allegiances to disciplines they call home, whether it is computer science, psychology, design, or any number of other disciplines. The Learning Sciences does not claim to have a monopoly on interdisciplinary approaches to studying education. Nevertheless, my claim is that, globally, learning scientists form a cohesive, yet diverse, community of scholars with enduring characteristics of interdisciplinarity, empiricism, attention to researching learning in context rather than in the lab, and action-orientation—the desire not only to study, but also to invent, environments for learning. Table 2.1 summarizes this evolutionary history to date.
<table>
<thead>
<tr>
<th>Time Period</th>
<th>Empirical</th>
<th>Interdisciplinary</th>
<th>Contextualized</th>
<th>Action- or design-oriented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early 20th century</td>
<td>Empirical study of learning is emerging from medicine, biology, physics</td>
<td>Education moves from pre-disciplinary to becoming a discipline</td>
<td>Contested: Deweyan vs behaviorist approaches</td>
<td>Educational interventions just beginning to be connected to research</td>
</tr>
<tr>
<td>1950s–1980s</td>
<td>Experimental paradigm entrenched in educational psychology.</td>
<td>Psychology is established as a discipline. Education becomes a quasi-discipline, with major branches in curriculum and instruction, and educational psychology. Cognitive science begins bringing disciplines together</td>
<td>“Methods wars” show tension between quantitative and qualitative (contextualized) approaches in education schools. Most research attempts to explain culture within cognitive framing</td>
<td>Instructional design and curricular design well entrenched in U.S. schools of education but separated from development of learning theory</td>
</tr>
<tr>
<td>1990–2000s</td>
<td>Education moves towards randomized, controlled clinical trials as “gold standard.” Other forms of empiricism are contested. In contrast, learning sciences embraces eclectic empiricism, including new methods</td>
<td>Education is entrenched as a discipline. Learning sciences explicitly draws on cognitive sciences and computer science</td>
<td>Learning sciences links to older theories in cultural-historical activity theory and ecological psychology.</td>
<td>Learning sciences differentiates itself from education research writ large by linking design and research through novel methodologies (design-based research). Learning sciences considers applied research in schools even as cognitive science becomes less applied</td>
</tr>
<tr>
<td>2000s–present</td>
<td>Learning sciences continues to link to new forms of empiricism, including new ways of modeling through learning analytics and educational data mining</td>
<td>As a community, learning scientists become more established while residing in many disciplinary departments (computer science, education, communication, psychology, information science, etc.)</td>
<td>Learning sciences moves from primarily investigating individual cognition to a much greater emphasis on practices, groups, culture and language, and identity</td>
<td>Learning sciences’ design orientation continues to embrace school settings and technologies, but also moves towards designing learning environments across contexts and through the lifespan. Design-based research and variants are taken up by other disciplines</td>
</tr>
</tbody>
</table>
Bibliometric analyses by Lund and colleagues indicate that education is one of the most cross-cutting intellectual areas within social sciences generally, outstripping fields such as psychology and anthropology (Lund, 2015; Lund, Jeong, Grauwin, & Jensen, 2015). Importantly, the analyses of Lund et al. (2015) indicate that many of the seminal publications related to the foundations and flowering of the learning sciences themselves are more likely to be cited across disciplines.

As I reflect back on the community, I am grateful. Intellectually, I came of age at a time when Learning Sciences was able to create an exciting space for action and reflection, science and design, innovation and insight. Some of the battles in creating this space were hard-won, including legitimizing the role of design knowledge as a valid product of scholarship (Edelson, 2002; Hoadley & Cox, 2009), insisting that we attempt to internationalize the community of researchers, and successfully navigating the tension between being a discipline versus an interdisciplinary field. The creation of a vibrant professional organization and maintaining the exceptional quality of two Society-affiliated journals has taxed a phalanx of the best scholars in the field. They have set aside their own work to edit, review, run conferences, and so on, usually without the built-in respect that would come from doing that work in the more discipline-based venues that align with the names of their academic departments. And, I keep coming back to this idea of communion—of being willing to recognize and embrace the epistemologies, methods, and theories of disciplines that are not one’s own. As new students interested in learning encounter the community for the first time, they are often as excited as I was at the possibilities when we try to both understand and engineer learning with all the tools at our disposal. However, they also are frequently nervous about transgressing the norms of their home discipline. After 30 years of participating in this community, it is easy for me to tell them the results are worth it.

Further Readings
Cognitive science is a major influence in the learning sciences. This is a good introduction to its history and hence to some important intellectual roots of learning scientists.

Another discussion of how learning sciences overlaps with other fields, and some of the characteristics that define it.

An analysis and a vision for the young field of the learning sciences, written by one of its foundational scholars.

An excellent source for those who want to understand the philosophical, theoretical, and methodological tensions in educational research.

This chapter focuses on the development of CSCL as a research field and community, both as part of the learning sciences and beyond.

NAPLeS Resources
References


