The Missing Link between Research on Mathematics Curriculum Effectiveness and Policy: Theory as a Mediator

Karen D. King
University of Georgia
March 3, 2009

This material is based upon work supported by the National Science Foundation under Grant No. DRL-0732184. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Overview of the Talk

• Problem of Definition of *Curriculum*
 – Implications of assumptions for teaching
 – Implications of assumptions for policy
 – Implications of assumptions for research

• Research Setting and Questions
• Initial Results
• Comments and Conclusions
What do people mean when they use the term *curriculum*?

- Frameworks or standards that list a set of curricular topics to be taught in particular grades or grade bands (e.g., NCTM Curriculum Standards, State Curricular standards)
- Instructional materials for teachers and students, including assessment materials (e.g., Saxon Math, *Connected Math*)
What might be the implied mechanism for impact of curriculum?

• If curriculum is the set of topics to be covered in a particular year, what about curriculum leads to student learning?
 – For example, assumptions underlying the NCTM Curriculum Focal Points are:
 • covering fewer topics leads to better student learning
 • covering topics in a particular order leads to better student learning
 – What is it about the number of topics covered in a particular order that supports student learning? What is the implied causal mechanism?
Implied mechanism for impact of curriculum as a set of materials

- If curriculum is viewed as a set of materials for teachers and students, there are further ways to define what the materials are/represent, and therefore how they impact student learning
 - Collection of tasks, examples and explanations, carefully sequenced to be taught in a particular order
 - Collection of tasks, examples and explanations, to be chosen from at the teachers’ discretion
 - Descriptions of a plan for instruction and a set of tasks, examples, and explanations that can/must be used to execute that plan for instruction
Examples

• Saxon Math
 – Behaviorist theory of learning
 – Spiral combined with mastery curriculum design
 – Intended to be used in total

• Math in Context
 – Constructivist theory of learning
 – Realistic Mathematics Education curriculum design (Gravemeijer, 1998)
 – Intended to be used in total
Fidelity of Implementation

• Measure of how well the implementation matches the intended intervention (Fullan, 2007)
 – Implication is that teachers work as technicians, implementing the author’s vision in his or her classroom

• Policy makers create policies to enforce fidelity of implementation
 – Curriculum-based professional development
 – Curriculum pacing guides

• Works against other policy reforms attempting to professionalize the teaching profession
Primary Concerns

- When did implementing a particular curriculum become a proxy for effective instruction? (c.f., Tarr, et al., 2008)
- What matters for student learning – effective instruction or implementation expertise?
- Given the existing research that usually finds minimal effect or interaction effects for particular curriculum use, what should policymakers do to improve mathematics learning?
Current Policy Responses

• Mandate curriculum (state/district adoptions, curriculum pacing guides)
 – Assumes the implementation of particular curriculum leads to effective instruction
• Curriculum-based professional development
 – Supports the technical implementation of a particular curriculum
• Seek research on “What Works?”
 – Emphasis on investing in material resources over human resources
Usability

• If curriculum is viewed as providing resources to support instruction, how does one measure the efficacy of the curriculum?
 – How easily can teachers use the materials to implement effective instruction?
 – How easily can teachers adapt the materials to their contexts to implement effective instruction?

• Assumption is that teachers make professional decisions in use, adaptation, and non-use of materials.
Levels of use and adaptation

- Use without modification
- Use with adaptation
 - Adapt to be relevant to students’ lives
 - Adapt to change the numbers in the problems
 - Adapt for special needs students
 - Change the mathematical representations
- Use as one of many resources
- Replace
The Study

- How do teachers use the district mandated curriculum materials?
- What are the impacts of this use on students’ achievement?
Significance of the Study

• Framed not as “fidelity of implementation” as a measure in evaluating the curriculum
• Instead framed as “teachers as decision-makers in their classrooms” and trying to better understand
 – The decisions teachers make
 – The reasons for these decisions
 – The impact on student achievement
• In particular, trying to understand these issues in the context of urban classrooms where teachers perceive unique constraints on teaching
Research Design

- **Connected Mathematics Project (CMP) as the instructional materials**
 - most widely used of the NSF-funded middle grades instructional materials

- **Large urban district in Northeast of about 45,000 students**
 - Uses CMP
 - Has had a Local Systemic Change project that has supported intense, CMP-based professional development
 - Studying a district under “ideal” conditions for the implementation of materials, but otherwise has the other typical issues of urban districts
Research Design

• Mixed methods design
• Population study of teachers’ use based on survey data and student achievement data (March 2009)
• Case studies of two schools (October 2008)
 – Interviews and observations of teachers about their planning and execution of lessons
 – Benchmarking assessments of student achievement in the observed classrooms
Initial Results

- Two distinct profiles of use
 - Implementer – Technical implementation of the written lessons provided by the teacher materials with small adaptations
 - Strong use of the teacher materials and ancillary materials
 - Varying quality of use of standards-based instruction (based on observations)
 - Designer – Uses the materials, in conjunction with others, to design and teach a lesson
 - Use of student materials, but less reliance on teacher materials
 - Varying quality of use of standards-based instruction (based on observations)
Where we are going from here

• Analysis of the student benchmarking examination data from the students in the case study teachers’ classes

• Continuing analysis of profiles of use and relationship to student achievement

• Population survey data collection of the middle grades teachers in the district using the Survey of Enacted Curriculum and a project-designed CMP survey focused on materials use (March 2009)

• Student achievement data collected from state tests and HLM analysis modeling school and teacher effects
Conclusions

• The field needs to be more specific about what is meant by the term *curriculum*

• In particular, as we conduct research, we need to be clearer about what we theorize is the mechanism of impact
 – Particular topic coverage (e.g., curriculum standards)
 – Materials implementation
 – Materials use

• This clarity is needed to provide better advice to policymakers so their policy formulation is better able to be driven by research results (Confrey, et al., 2008)