Biostatistics II, Spring 2014

Instructor: Tod Mijanovich
Email: tm11@nyu.edu
Phone: 212-998-7467
Office/Box: Department of Nutrition, Food Studies, and Public Health, 411 Lafayette (b/w West 4th and Astor Place), 5th Floor, Room 537
Office Hours: By appointment

TAs: Donovan Jones (donovan.jones@nyu.edu)
Reza Roodsari (gsr251@nyu.edu)

Class Meeting Time/Room: Mondays, 4:55-6:35, Silver 414

COURSE OVERVIEW: This course sequence is intended for graduate students in epidemiology, public health, and clinical research fields, and is the second in the Biostatistics sequence. It will concentrate on more advanced methods of statistical analysis and research design that are used in biological and medical applications of statistics. It is assumed that the student will be familiar with statistical techniques as presented in Biostatistics I (RESCHGE2995/GPH-GU-2195). The program SPSS will be used to perform analyses and processing. It is assumed that the student has basic skills in the use of SPSS for entering data sets and performing basic analyses and graphics.

TEXTBOOKS Weekly readings from texts and articles will be posted.
Required text: Intuitive Biostatistics (Moltulksy)
Optional text: Statistics for Research (Dowdy)

OTHER NEEDS
Software: The statistical software package SPSS will be used intensively in this course. It is highly recommended that you obtain a copy at NYU computer store. You can also access SPSS in most NYU computer labs as well as via the virtual lab at https://vcl.nyu.edu/vpn/index.html
Calculator: A basic scientific calculator is needed.
iClicker: iClicker will be used as a tool for interactive teaching. A satisfactory iClicker record (90% participation or higher) is required for you to receive a full participation grade. It is your responsibility to bring the iClicker to class.

COURSE REQUIREMENTS
Readings: A list of readings is found at the end of this syllabus. All readings are required unless listed as optional. Required readings come from the “Intuitive Biostatistics” book or are in the form of articles that are posted on the NYU Classes website. Students should read listed chapters prior to that week’s class.
Homework: Problem sets will be assigned during the course. A typical homework involves understanding statistical concepts, using SPSS to analyze data, and interpreting the results, with minimal manual calculation. Homework assignments are automatically administrated through NYUClasses. Each assignment will be available online for approximately a week. You will need to complete the assignment online and will receive instant feedback upon completion. **The homework will become unavailable after its due time. This means it is not possible to turn in late homework.**

Project: There is one project this term, which will focus on both techniques for continuous outcomes (multiple regression, ANOVA) and binary/discrete outcomes (contingency tables, logistic regression). Required analyses for the project will be presented in the form of the results section of a scientific paper. All projects must be typed. All work is to be conducted independently. Plagiarism will result in a grade of 0.

Exams: There will be a midterm and final exam. Each will contain both general statistical knowledge and analysis questions relating to theory, assumptions, procedures, and interpretation. They do not emphasize formulas.

Grades
- Weekly Homework: 10%
- Project: 25%
- Midterm: 25%
- Cumulative Final: 30%
- Participation: 10%

Weekly Schedule
Note: schedule is tentative and subject to change. All readings are suggested

- **Week 1** (1/27): Overview
- **Week 2** (02/3): Correlation and Simple Linear Regression
- **Week 3** (2/10): Theory and Diagnostics
- **Week 4** (2/17): President’s Day (**NO CLASS**)
- **Week 5** (2/24): Polynomial Regression, Dummy Variables
- **Week 6** (03/3): Multiple Regression 1
- **Week 7** (3/10): Multiple Regression 2
- **Week 8** (3/17): Spring Recess (**NO CLASS**) **Project Due**
- **Week 9** (3/31): Midterm Exam
- **Week 10** (4/7): Contingency Tables
- **Week 11** (04/7): Categorical Data Analysis
- **Week 12** (4/14): Logistic Regression
- **Week 13** (4/21): Advanced Regression Models
- **Week 14** (4/28): Survival Analysis
- **Week 15** (05/5): Cox Regression and Proportional Hazards (**Project Due**)
- **Week 16** (5/12): Review
- **Week 17** (5/19): Final Exam
Readings

Note: not all weeks have readings. All readings are required unless listed as optional. Students should read listed chapters prior to that week’s class.

Week 1: Overview
Altman & Bland: Absence of evidence is not evidence of absence
Research Design and the Logic of Control
Motulsky: chapter 44

Week 2: Correlation and simple regression
Fields, Andy: Simple Regression
Bland & Altman: Regression towards the mean
Motulsky: chapters 32, 33, 34
Optional: Dowdy 9.1-9.4

Week 5: Polynomial regression, dummy variables
Optional: Dowdy 14.7

Week 6&7: Multiple Regression
Reference guide on multiple regression
Multiple regression in SPSS
Motulsky: chapters 35, 37, 38
Optional: Dowdy 14.1-14.6

Week 10: Contingency Tables
Odds ratio
Motulsky: chapter 26
Optional:

Week 11: Categorical Data Analysis

Week 12: Logistic Regression
Pampel, Logistic Regression
Motulsky: chapter 36, 37
Optional: Dowdy, 14.8

Week 14: Survival Analysis

Week 15: Cox Regression and Proportional Hazards