Survey Research Methods, RESCH-G E 2139

Instructor: Joel Middleton, Visiting Professor of Applied Statistics, Steinhardt School, New York University
Office: Kimball Hall, 246 Greene Street, Room 803 W
Office Hours: Mondays, 10-12 and by appointment

Phone: 202-431-1412
E-mail: joel.middleton@gmail.com

Prerequisites:
At least one year of applied statistics (including multiple linear regression) and familiarity with the use of one or more standard statistical software packages (especially Stata) is strongly recommended.

Overview:
The social survey is an essential tool for researchers in the social, behavioral and policy sciences and in the applied professional fields, such as education, social work, public health, and marketing. The goal of this course is to provide a broad overview of the many aspects of survey research methodology including sampling, instrument design, the psychology of survey response, field testing, survey operations, nonresponse bias analysis and correction, and primary and secondary analysis of survey data. No prior experience in survey methods is expected and the course is designed primarily for those who intend to use surveys in their own research – whether designing original surveys or performing secondary analysis on survey data collected by others. Whenever possible, we will use examples and data from real surveys employed by academic researchers, professional survey firms, and Federal statistical agencies. Course assignments will require students to actively participate in every stage of the survey process, from initial design to final analysis.

Course Text:

Accommodations:
NYU is committed to facilitating equal access for students with disabilities, including hearing and visual impairments, mobility impairments, learning disabilities and attention deficit disorders, chronic illness, and psychological impairments. If you are not comfortable discussing your needs with me, I encourage you to contact the Moses Center on 240 Greene Street, 2nd Floor, 212-998-4980, for assistance in ensuring that you receive any necessary accommodations.

Evaluation:
- Problem sets or reading summaries (approximately weekly) – 30%
- Midterm project (take home) – 35%
- Final Project (take-home) – 35%
Schedule:

SECTION 1: INTRODUCTION

1. Introduction and overview.

2. Perspectives on Surveys,
 Chapter 2

SECTION 2: STATISTICS

3. Introduction to sampling: populations, sampling frames, and coverage error.

 Groves, chapter 3, also 4.1-4.3

4. Sample design and sampling error.

 Groves, sections 4.4, 4.5, 4.7

5. Weighting, imputation and estimation in complex surveys.

 Groves, sections 10.5 to 10.7.

6. Putting it together in Stata.

 Assignment 5 handed out in class
SECTION 3: HUMANS

7. Methods of data collection.

 Groves, Chapter 5.

8. Methods of data collection continued.

 MIDTERM PROJECT DUE

9. Questions and answers in surveys.

 Groves, Chapter 7

 Pearson, Robert W., Ross, M., and Dawes, R.M. Personal Recall and the Limits of Retrospective Questions in Surveys. In Questions about Questions: Inquiries into the Cognitive Basis of Surveys. (emailed to class)

10. Evaluating survey questions.

Groves, Chapter 8.

11. Survey interviewing.

Groves, Chapter 9.

12. Survey nonresponse

Groves, Chapter 6.

13. Postcollection survey processing; imputing missing data.

Groves, Chapter 10.

Groves, Chapter 11

15. Advanced topics: getting answers to hard questions; comparing cross-cultural survey response.
(If there is time)

cultural comparability of measurement in survey research,” American Political Science Review 97(4). (JSTOR)

Baumgartner, H. and J-B. Steenkamp. 2001. Response styles in marketing research: A cross-
national Investigation. Journal of Marketing Research, 38(2): 143-156. (Bob-cat)

FINAL PROJECT DUE

Midterm Project:

For your midterm project, I would like you to identify an existing data set from a national survey. You are free to choose a data set from a field that interests you, but the survey must include weights and must have been collected using a multi-stage design and you must be able to obtain it easily. My goal is to have you become familiar with the process of analyzing data from large surveys, and to see the connections between the statistical theory we have been learning and the application. The project should be conducted in Stata, available in the laboratory computers.

Project steps:

1. Describe the method of data collection. What was the sampling frame? What was the sampling method?
2. Describe the weights in the file. Are there multiple types of weights? What are they? How were they created?
3. Do an exploratory analysis of the weights. Run descriptive statistics on the weights. Examine them in a histograms, or in scatter plots (if there is more than one weight), or using some other appropriate method.
4. Come up with a research question that you can address using the data. It could be something simple like, “is there a link between child obesity and mother’s weight at the time of birth?”, or “Do students in rural schools get better test scores?”
5. Analyze the data using the appropriate weighting, stratification and clustering using the SVY commands in Stata. Compare results to those run without the SVY command and no weights. Would you reach the same conclusion using the weights as without?
6. Based on 5, estimate the design effects.

The paper should be no more than 10 pages with all figures, tables and any references.
Final Project:
The intent of the final project is for you to synthesize the material from the second half of the course. My intention is for you to use the project to plan an original data collection project or for you to delve deeper into any existing work you do with surveys. Project steps:

1. Choose two constructs of interest to you in your substantive research. At least one of these should be fairly abstract. (i.e. and attitude, belief or latent attribute). Conduct a short literature review (no more than ten citations) and briefly describe these constructs.
2. Draft a short survey instrument designed to measure these constructs (no more than ten items).
3. Describe the target population of interest and rationale. Any particular biases they may have.
4. Describe your intended mode of data collection. Discuss your choice with respect to the tradeoff between cost and error.
5. Field test your short questionnaire on a convenience sample of classmates, friends, or others. That is, if you discussed a mail survey, collect your data via pencil-and-paper; if you plan a phone survey, use the telephone to collect your field test data; if you discussed a web or email survey, administer your field test via email or use a free online survey website like Survey Monkey. Conduct at least five test interviews/surveys, but no more than 15.
6. In addition to the test data, collect feedback on the survey items from your respondents. This feedback does not have to be collected using the same mode, although it can be (e.g. you may collect data via pencil-and-paper but verbally interview respondents for their feedback on the questions). Solicit feedback with the intent of understanding how the respondents answered your items and whether any items were confusing or problematic.
7. Analyze your pilot data and feedback. Are any items not functioning as expected (measurement error) or not measuring the intended construct (construct validity issues)? Are there any unexpected patterns in the pilot data, such as lack of variation on an item (keeping in mind your artificially small pilot sample size)?
8. Redraft your items again with these issues in mind. Again, discuss briefly in light of the pilot data and feedback.

The entire project should be no more than twelve pages in length, including the survey items. If you are already involved in ongoing survey research with an original instrument or with a publicly-available data collection and you wish to tailor the assignment to this survey, please contact me in advance of the due date of this project.