Voices and Listeners: Toward a Model of Voice Perception

Article · January 2011
DOI: 10.1121/1.3684228

CITATIONS
0
READS
65

2 authors:

Jody Kreiman
University of California, Los Angeles
187 PUBLICATIONS 3,596 CITATIONS

Diana Van Lancker Sidtis
New York University
145 PUBLICATIONS 3,846 CITATIONS

Some of the authors of this publication are also working on these related projects:

- Miscellanea View project
- Formulaic language View project

All content following this page was uploaded by Jody Kreiman on 17 February 2015.

The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately.
Voices and Listeners
Imitation in Speech
Human Voice in Evolutionary Perspective
Phonetics of Endangered Languages
and more

A publication of
the Acoustical Society
of America

Speech Communication
Voices and Listeners: Toward a Model of Voice Perception

Jody Kreiman
Department of Head/Neck Surgery
University of California, Los Angeles, School of Medicine
Los Angeles, California 90095

and

Diana Sidtis
Department of Communicative Sciences and Disorders
New York University
New York, New York 10012

and

Nathan Kline Institute for Psychiatric Research
Orangeburg, New York 10962

Introduction

As humans, we are exquisitely tuned to voices and all that they are capable of conveying (Table 1). On hearing someone speak, we quickly infer details about gender, age, education, and geographical background (Sebastian and Ryan, 1985). We listen for signs of interest, well-being, competence, and cooperation, or coldness, ineptness, and resistance. Along with these, mood, emotional conditions, personality, and psychological status are simultaneously assessed by the listener, with varying accuracies. These speaker characteristics constitute a very large, complex array and pose huge challenges to analytic approaches.

Not least important among the characteristics listeners extract from voices is the identity of the person who is speaking. The person may be someone familiar; or, much less commonly, we may try to identify a stranger, for example in a forensic situation. In this paper we will describe some of the important differences between these two classes of stimuli—familiar and unfamiliar voices—and the cognitive and neuropsychological processes used in their perception. We then present a preliminary model of the manner in which listeners tackle each kind of information, taking into account underlying brain structures involved in these disparate processes. Finally, we explore the implications of our model for measurement of quality in the voice clinic and elsewhere.

Which came first: Familiar or unfamiliar voices?

Unfamiliar voices surround us in life, from the sound of the cashier greeting us at the market, to students talking in the hall outside a classroom, to the voices of other patrons conversing in a background of chattering and cheering at a sports event. When we pay attention to such voices, they can provide substantial amounts of information about the speaker, as noted above, and as a result it is easy to assume (as we ourselves have done in the past) that the unfamiliar voice is somehow the basis of the perceptual processes used to extract information from all voices. After all, we reasoned, every voice was unfamiliar before it was familiar, so logically familiarity develops out of unfamiliarity, which implies that the unfamiliar is foundational.

In the beginning was the familiar voice

A substantial body of evidence suggests that the assumption that unfamiliar voices are fundamental is fundamentally wrong. First, we note that the ability to recognize a familiar voice (and especially the voice of a parent, offspring, or mate) is very widespread among animals. Many, many species, including deer (Torriani et al., 2006), sheep (e.g., Sebe et al., 2010), wolves (Goldman et al., 1995), mares (Wolskia et al., 1980), many marine mammals (e.g., Insley, 2001; Pitcher et al., 2010), rodents (Fuchs et al., 2010), bats (Voigt-Heucke et al., 2010), amphibians (Bee and Gerhardt, 2002; Simmons, 2004), and birds ranging from penguins (e.g., Jouventin and Aubin, 2002) to parrots (Berg et al., 2011) also recognize the familiar voices of their kin. Recognition often begins very early in life, or even immediately; for example, the developing human fetus has been shown to recognize the voice of its mother (Kisilevsky et al., 2003). Scientists have only begun to appreciate the social complexity and sophistication of these behaviors. Recent studies reveal that seal mothers time their departure for food gathering to coincide with successful voice recognition by their pups, so that reuniting on their return will be successful (Charrier et al., 2001). In comparison, mother evening bats recognize the
voices of their offspring immediately after birth, suggesting calls have a genetic component (Scherrer and Wilkinson, 1993). These biological scenarios cast an eerie doubt on the traditional assumption that all voices, at the first instant, are unfamiliar.

Voice recognition facilitates reunions between foraging parents and offspring that are mobile or located in a crowded crèche, helps animals ensure that care is provided to the correct infant, and promotes bonding between mothers and infants. The wide distribution of voice recognition abilities across species, combined with the clear survival value of such abilities and their strikingly full-blown ontogenetic appearance, suggests that familiar voice recognition is evolutionarily very old. In fact, it may have appeared by the time that frogs emerged (Burke and Murphy 2007; Bee and Gerhardt, 2002; see Kreiman and Siddis, 2011, for more review). Studies showing that primate brains may have voice-sensitive areas analogous to those seen in human infants as young as 7 months (Petkov et al., 2008; Petkov et al., 2009; Grossmann et al., 2010) further point to a long evolutionary history of voice recognition abilities (Belin and Grosbras, 2010). Producing and recognizing familiar voice patterns thus antedates, by millions of years, the more lauded evolutionary development of speech and language in human communication and cognition. For discerning cohort, friend from foe, and recognizing intimate family members—and being able to achieve this at a distance and in the dark—the preeminence of the familiar voice pattern in evolutionary biology can hardly be exaggerated (Sidtis and Kreiman, 2011).

Recognition of the familiar voices of animals that are not first-degree relatives is less common, but helps maintain proximity and promotes group cohesion in social animals by providing a means of separating insiders from outsiders, even at a distance (Fig. 1). For example, female vervet monkeys can recognize the voices of their own offspring but also of unrelated juveniles, and can associate those voices with the correct mother (Cheney and Seyfarth, 1980); and female baboons recognize both the screams and threat grunts of unrelated individuals (Cheney and Seyfarth, 1999). Playback experiments (in which recorded vocalizations are broadcast in the field to freely-behaving animals and responses are recorded) have shown that the extent of elephants’ defensive responses (bunching together, retreating) to the voices of elephants from the other family groups encountered within their range can be predicted by the frequency with which those animals are encountered. Response patterns imply an ability to recognize about 100 individuals (McComb et al., 2002). In the vast landscape of biological vocal recognition, not to be neglected is the ability of nonvocal reptiles to recognize alarm calls of other species (Vitousek et al., 2007). Although these abilities are impressive, they pale in comparison to prodigious human abilities to recognize the voices of people we are not related to. Besides our friends, family, neighbors, and other associates (the “familiar-intimate” set), thanks to the media we are easily able to recognize and identify scores of people we have never spoken to or even met (the “familiar-famous” voices: actors, politicians, announcers, broadcasters), as well as fictional beings of endless variety (Bugs Bunny, Hal the computer, and Robby the Robot, for example). In fact, studies of familiar face recognition (Bahrick et al., 1975) and informal voice recognition challenges suggest that there may not be an upper limit to the number of voices humans can recognize (Ladefoged and Ladefoged, 1980).

In contrast, it is not clear how much attention listeners of any species actually pay to unfamiliar voices under normal circumstances. Most animals, including humans, treat unfamiliar voices as part of the background of noise that surrounds them every day. As an example, imagine yourself on a busy street, surrounded by strangers talking to each other or on their cell phones. The voices we hear under these circumstances, although ubiquitous, barely penetrate consciousness. In fact, in a study in which the original caller was surreptitiously replaced with a different talker during a telephone survey call, only 6% of subjects noticed the change (Fenn et al., 2011). In contrast, the voice of an approaching friend jumps out from a background of unknown voices, much as the sound of our own name emerges from the unattended

Physical characteristics of the speaker		
---	---	
Age		
Appearance (size, attractiveness)		
Drunk?		
Healthy?		
Personal identity		
Race, ethnicity		
Sex		
Sexual orientation		
Smoker?		
+/- Teeth?		
Tired?		

Psychological characteristics of the speaker		
---	---	
Relaxed?		
Competence		
Lying?		
Mood or emotional status		
Intelligence		
Personality		
Psychiatric status		
Under stress?		

Social characteristics of the speaker		
---	---	
Education		
Occupation		
Regional origin		
Role in the conversation		
Social status		

Table 1. Some of the kinds of judgments that listeners can make from voices.
chatter in a crowded room. From these several perspectives, we must conclude that it is the familiar voice pattern that plays the dominant role in animal biology and human culture (Sidtis and Kreiman, 2011).

The brain behind the voice

These findings suggest that there should be differences in the neuropsychological and cognitive processes involved in perceiving familiar versus unfamiliar voices. That is, if recognizing a familiar voice is “basic” in some way, we might expect that there exist specific, efficient neuropsychological mechanisms to support this ability. Similarly, if unfamiliar voices are not important or salient stimuli, we might expect a messier set of processes to be engaged if and when we are forced to deal with them.

In fact, a substantial number of studies point to such differences. Recognizing a familiar voice and discriminating among unfamiliar voices are dissociated neuropsychological abilities, meaning that either one can be independently disrupted by neurological damage, leaving the other entirely intact (Van Lancker and Kreiman, 1987). Familiar voices engage a large expanse of cerebral systems. Upon recognizing a familiar voice, parietal lobes establishing associations in declarative memory, subcortical structures modulating memory, motivation and emotion, frontal lobes organizing and integrating behaviors, and temporal lobes processing auditory patterns and selected auditory features all participate (see Kreiman and Sidtis, 2011, for extended review). Although multiple cerebral structures play significant roles in processing familiar voices, studies of performance following brain lesions and in functional imaging give a role to the right cerebral hemisphere as a final common pathway for voice recognition, especially of familiar stimuli (e.g., Van Lancker et al., 1989; Neuner and Schweinberger, 2000; Belin et al., 2000; Latinus and Belin, 2011b; Gainotti, 2011).

Consistent with right hemisphere participation in familiar voice perception and recognition, evidence suggests that familiar voices comprise distinctive, integral, heterogeneous patterns, which can be accessed as unique, holistically stored units. These integral patterns resist systematic decomposition into bundles of separable features. Parameters like F0, timbre, and intensity—cornerstones of voice quality analysis—interfere with each other perceptually, such that irrelevant, unattended variation on one parameter facilitates or interferes with listeners’ judgments of the other, depending on whether that irrelevant variation is or is not correlated.

Fig.1. Some non-human animals that recognize the voices of familiar non-family members. A: vervet monkeys. B: baboons. C: elephants.
with the attended dimension (Melara and Marks, 1990; Li and Pastore, 1995). Similarly, studies using unfamiliar voices show that the harmonic and inharmonic (noise) parts of the voice interact perceptually, so that listeners’ sensitivity to either depends on energy levels in both (Kreiman and Gerratt, in press); and sensitivity to tremor rates in voice depends on the magnitude of the tremor, and vice versa (Kreiman et al., 2003). Further, listeners’ relative inability to reliably and consistently isolate single dimensions in a voice pattern is the largest source of error in voice quality ratings (Kreiman et al., 2007). These findings argue against reliance on feature-based models of voice quality of the sort that underlie most clinical voice evaluation protocols (about which more in a moment). As most studies of voice and voice quality perception use unfamiliar voices as stimuli, understanding the functional and perceptual roles of auditory-acoustic cues or features in the perception of familiar voices has only been crudely begun (Van Lancker et al., 1985).

These early attempts have shown that individual familiar voice patterns vary greatly in how (and how much) cues such as F0 or breathiness contribute to the recognition process.

While familiar voice recognition engages pattern recognition processes of the right hemisphere, discriminating among unfamiliar voices or “identifying” a voice heard only once or twice before (for example, in a voice lineup) engages auditory temporal receiving areas on both sides of the brain (Van Lancker et al., 1989), and seemingly involves both pattern recognition and featural analysis/matching skills. Error patterns in long-term memory tasks suggest that unfamiliar voices are encoded in terms of a generalized template or “prototype,” along with a set of deviations from that prototype which are forgotten over time so that memory tends to converge on average-sounding voices no matter what voice was heard originally (Papcun et al., 1989). Similarly, memory tests in change deafness studies (testing listeners’ awareness of abrupt voice quality changes during normal interaction) suggest that listeners remember only coarse differences between unfamiliar voices under normal circumstances (a “gist-based” representation, Fenn et al., 2011, p. 1454), and that memory for specific acoustic details of a voice may be weak or entirely absent. In contrast, for familiar voices, a complex, unique perceptual pattern is stored along with an array of personally-relevant associations (appearance, biographical and episodic history, affective nuances, and so on); recognition occurs within a second or two; and the “cues” triggering recognition vary widely with vocal pattern (Schweinberger et al., 1997a). These findings have led us to conclude that all voices are fundamentally patterns, and that pattern recognition and featural analysis reciprocally operate, in different degrees, for all voice perception processes, depending on the status of the voice with respect to its familiarity to the listener.

A large body of behavioral evidence also supports the notion that voices are best viewed as patterns. In a “repetition priming” protocol, listeners’ accuracy in judging whether or not a voice sample was famous improved when they had previously heard a different sample of the target voice, so that the advantage transferred between tokens of speech and did not depend on the specific acoustic details of an individual sample (Schweinberger et al., 1997b). Adaptation studies provide similar evidence. In these studies, the experimenter creates a stimulus continuum by “morphing” between two voices—for example, those of a male and a female. When listeners hear tokens taken from one end of the continuum, their judgments of ambiguous stimuli from the middle of the continuum shift, so that hearing a relatively male sample 3 or 4 times makes the ambiguous sample sound more female, and hearing tokens from the female end of the continuum makes it sound more male. These effects have been shown for judgments of speaker identity (familiar voices: Zäske et al., 2010; trained to recognize: Latinus and Belin, 2011a), but also for

Table 2: Some of the factors affecting listeners’ ability to identify an unfamiliar voice

<table>
<thead>
<tr>
<th>Factor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The a priori “distinctiveness” of the target voice</td>
<td></td>
</tr>
<tr>
<td>The speaker and listener’s accents and/or the language spoken</td>
<td></td>
</tr>
<tr>
<td>The presence of disguise or mimicry</td>
<td></td>
</tr>
<tr>
<td>The duration and phonetic content of the speech sample</td>
<td></td>
</tr>
<tr>
<td>Whether or not the same sample is used at learning and test</td>
<td></td>
</tr>
<tr>
<td>Filtering (for example, by a telephone or recording)</td>
<td></td>
</tr>
<tr>
<td>The listener’s inherent ability to remember voices</td>
<td></td>
</tr>
<tr>
<td>The listener’s attention at learning and at test</td>
<td></td>
</tr>
<tr>
<td>The listener’s sex</td>
<td></td>
</tr>
<tr>
<td>The listener’s professional training</td>
<td></td>
</tr>
<tr>
<td>The delay between hearing a voice and identifying it</td>
<td></td>
</tr>
<tr>
<td>The number and kind of distracter voices in the lineup</td>
<td></td>
</tr>
<tr>
<td>The instructions the listener receives</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. A fox and a hedgehog.
perception of emotion (Bestelmeyer et al., 2010), speaker sex (Schweinberger et al., 2008), speaker age (Zäske and Schweinberger, 2011), and ratings of roughness (Gerratt et al., 1993) from voice, and are interpreted as reflecting adaptation of a central representation (a pattern), rather than the effects of specific acoustic characteristics of the stimuli. Finally, studies of familiar voice recognition (e.g., Van Lancker et al., 1985) have demonstrated that the acoustic cues to personal identity vary from voice to voice, and the importance of a given cue depends on the context of the complete voice pattern in which that cue operates, and not on the value of the cue itself. Thus, unusual pitch contours or a marked foreign accent (for example) may be essential cues to a speaker’s identity, or not, depending on the other cues that are available to listeners. It is thus impossible to devise a set of features that are important for recognition of all voices: The importance of a given cue depends on the pattern in which the cue appears and on the status of the voice as familiar—and stored as a personally relevant auditory object—or unfamiliar and handled perceptually in terms of stereotypes or generalized templates.

One final difference between familiar voice recognition and unfamiliar voice discrimination is that familiar voice patterns are remarkably robust, so that we can recognize a familiar voice in noise, based on very short samples (often just the word “Hi” on a band-limited telephone line), even when the voice has not been heard for years or even decades and has changed with time (voices appear to change less with age than do faces). In contrast, virtually anything will disrupt efforts to match an unfamiliar voice to a decaying memory trace. Studies (primarily focusing on forensic situations) have shown that identification scores fluctuate as a function of a wide range of factors characterizing the speaker, the listener, and the circumstances surrounding originally hearing and subsequently identifying the voice, (Table 2; see Bricker and Pruzansky, 1976, or Kreiman and Sidtis, 2011, for review). It appears that the greater the reliance on featural extraction, comparison, and analysis, the worse we are at the task.

Features and patterns: A “fox and hedgehog” model for voice recognition

Taking an idea from the essay of Isaiah Berlin (1953) on Archilochus’ fable about a fox and a hedgehog (Fig. 2), we have proposed a model of voice perception that suggests voices can be recognized by varying applications of featural and pattern recognition processes. In the fable, the fox knows many little things while the hedgehog knows one big thing. There are many versions of the bipolarity expressed in this adage: empiricism contrasted with rationalism, Aristotle meets Plato, behaviorism compared with the sweeping ideologies of cognitive science, agility of thought versus persistence (Gould, 2003). In our model of voice perception, the aphorism is meant to represent the interplay between features and patterns in the speaker-listener interface. Some voices and some voice perception tasks draw more heavily on features (many little things), while other voices and other tasks utilize pattern recognition abilities more heavily. This counterpoint helps elucidate the respective roles of unfamiliar and familiar voices, in that featural elements figure importantly in the discrimination of unfamiliar voices (in the sense of matching to generalized templates), while overall pattern recognition predominates for familiar voices (in accessing unique auditory percepts).

Measuring voice quality

We have argued thus far that humans are good at familiar voice recognition because we have inherited this ability through our evolutionary past, and that familiar voices are best treated as integral patterns. Nevertheless, most approaches to voice quality assessment depend on the use of

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear (claram)</td>
<td>Clear, light, white</td>
<td>Clear</td>
</tr>
<tr>
<td>Deep (gravam)</td>
<td>Deep</td>
<td>Resonant, low</td>
</tr>
<tr>
<td>Brilliant (splendidam)</td>
<td>Bright, brilliant</td>
<td>Bright, vibrant</td>
</tr>
<tr>
<td>Smooth (suavam)</td>
<td>Cool, smooth, velvety</td>
<td>Smooth</td>
</tr>
<tr>
<td>Attractive (illeccbrosam)</td>
<td>Pleasing</td>
<td>Pleasant</td>
</tr>
<tr>
<td>Dull (fuscam)</td>
<td>Dead, dull, heavy</td>
<td>Dull, heavy, thick</td>
</tr>
<tr>
<td>Thin (angustam)</td>
<td>Constricted, heady, pinched, reedy, shallow, thin</td>
<td>Thin</td>
</tr>
<tr>
<td>Harsh (asperam)</td>
<td>Harsh, strident, twangy</td>
<td>Harsh, gravelly</td>
</tr>
<tr>
<td>Unsound, hoarse (infirmam, raucam)</td>
<td>Faulty, hoarse, poor, raucous, rough</td>
<td>Hoarse, rough, labored, noisy</td>
</tr>
<tr>
<td>Brassy (aeneam)</td>
<td>Buzzy, clangy, metallic</td>
<td>Metallic</td>
</tr>
</tbody>
</table>

Table 3: A few examples of terms for voice quality, from a long history of interest in such descriptors.
perceptual or acoustic features for quality, or both—in other words, on approaches that use processing strategies that resemble those we apply to unfamiliar voices, with which we are considerably less adept. For example, many authors have proposed lists of descriptive terms to assess quality, and listeners typically measure quality by indicating the extent to which a voice possesses each feature (Voiers, 1964; Gelfer, 1988; Isshiki et al., 1969; Kempster et al., 2009). This approach (the only one currently available for quantifying quality), replete with redundancies and ambiguities, arises from 2000 years of tradition rather than from theory. Many of the features commonly in use today—for example, harsh, breathy, clear, bright, smooth, weak, shrill, deep, dull, and hoarse—can be traced to Roman writings on oratory (Table 3; Laver, 1981; Austin, 1806). Because assessing voices on such rating scales requires listeners to analyze a vocal pattern into component features, we might expect listeners to have a great deal of difficulty using such quality measurement protocols, and in fact many studies have shown quite low levels of interrater agreement, as predicted (see Kreiman et al., 1993, for review).

Nevertheless, quantifying voice quality is essential to many endeavors, including studying the efficacy of treatments for voice disorders or the acceptability of speech synthesis efforts. This leaves us with the following problem: How do we quantify an unanalyzable pattern? One solution under investigation (Gerratt and Kreiman, 2001; Kreiman et al., 2007) is the use of an analysis-by-synthesis approach in which voices are copied using a voice synthesizer specialized for replicating variations in voice quality. Because the complete voice pattern is copied exactly, the synthesizer parameters explicitly link a range of selected features of the acoustic signal to the overall, integral pattern, and can thus be used validly as objective acoustic indices of subjective perceptual responses. Because this method allows us to study how listeners manage the interplay between features and patterns, it allows for applicability to both familiar and unfamiliar voices and holds the promise of elucidating their distinctive dynamic processing characteristics.

The larger universe of perceptual judgments
Speakers make judgments regarding physical, psychological and social characteristics from voice that go well beyond mere speaker identity, and we are only beginning to understand the range of information conveyed and the manner in which such information is extracted and exploited. For example, the emotional and attitudinal nuances conveyed by voice may well number in the thousands; and many animals (including possibly humans) are adept at extracting information related to reproductive fitness from vocal signals (e.g., Hardouin et al., 2009; Charlton et al., 2007; Apicella and Feinberg, 2008). Thoughtful examination of everyday talk reveals an immense set of possible judgments listeners may make (Table 4). This is not an exhaustive list, but is intended to point to the potentially large constellation of characteristics that underlie functional voice perception. It becomes clear that a systematic reductionist approach to the study of voice perception in the face of these many variables is unre-
alistic; yet dismissal or rejection of all but a few characteristics holds little promise of explaining voice perception. It has become obvious in inspecting the array of potential cues that not all will pertain to the successful perception of a given voice pattern. Instead, some emerge as decisive to perception of a pattern, and most will be irrelevant.

Drawing on the perspective that individual voice patterns are singular and unique, we propose a model of voice perception that allows for interplay between characteristics or features and the signature voice pattern. Our model is based in the interactivity of voices and listeners in all of voice perception, and takes into account three continua—the relative contributions of feature and pattern recognition processes to recognition or perception of different sorts of voice patterns; differences in the neurological and psychological status of familiar and unfamiliar voices; and left versus right cerebral hemisphere processing and the contributions of subcortical systems in the brain. Perception of the myriad vocal characteristics communicating physical and personality cues, mood, emotion, attitude, background and so on is likely to differ significantly with the relationship of the voice to the listener—that is, its status as familiar or unfamiliar. While deconstruction of neutral voice samples will yield fascinating details about acoustic structure, it is taking on the challenge of the talker-listener interaction with a personally familiar voice pattern and its complex indices of information that will lead to fruitful studies of this immense natural endowment.

Acknowledgments

Some of the research described in this paper was supported by grant DC01797 from the National Institute on Deafness and Other Communication Disorders. Software used in analysis-by-synthesis can be freely downloaded from www.surgery.medsch.ucla.edu/glottalaffairs/software.htm.

References

Petkov, C. I., Logothetis, N. K., and Obleser, J. (2009). “Where are the human speech and voice regions, and do other animals have anything like them?,” The Neuroscientist 15, 419–429.
Diana Sidtis (formerly Van Lancker) received an MA in English Language from the University of Chicago and a PhD in Linguistics from Brown University, followed by an National Institutes of Health postdoctoral fellowship at Northwestern University and clinical certification in Speech Pathology from California State University at Los Angeles. She is the former chair and currently Professor of Communicative Sciences and Disorders at New York University. She performs research in neurolinguistics, motor speech disorders and voice at the Nathan Kline Institute for Psychiatric Research.

Jody Kreiman received her PhD in Linguistics from the University of Chicago. She is currently Professor of Head and Neck Surgery at the University of California, Los Angeles (UCLA), and is also affiliated with UCLA’s Departments of Communication Studies and Biomedical Engineering. Her research focuses on perception of voice quality, on the relationships between voice production and acoustics, and on the uses of voice quality in natural languages. She is a Fellow of the Acoustical Society of America and is the Editor for Speech of the Journal of Speech, Language, and Hearing Research.

Only custom made Quiet Curtains provide laboratory tested (WEAL) metrics that allow you to recommend our products with confidence. Sound Blocking STC Quiet Curtains use specialized, proprietary vinyl linings rated 15, 17 and 20 STC. These linings are sewn into beautiful curtains and drapes for use as window and wall treatments, room opening covers and room dividers.

Sound Absorbing Acoustic Quiet Curtains provide tested NRC values from .4 NRC to 1.0 NRC. Years of testing various fabrics and constructions allow us to “dial in” precise values for your client’s requirements. From performing arts venues to high tech laboratories, our Acoustic Quiet Curtains and draperies are proving their value. We also make combination curtain systems with useful STC and NRC values.

www.QuietCurtains.com

Here’s what experts say to us:
“Complete Soundproofing has the best, well-engineered sound blocking and sound absorbing curtain systems in the United States... not only do you understand the complexity of acoustical curtain materials, but you have taken the painstaking diligence to test your products and correctly apply their physical properties to your remarkable curtains. I truly feel that this effort has made my job easier by allowing me the opportunity to peruse your ever-growing product line for satisfying a variety of my client’s particular needs”

Michael Burrill, INCE
Director / Senior Acoustical Scientist, ARCADIS U.S., Inc

858.272.3615